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Objective: To investigate the effect of amitriptyline, bupropion, doxepin or venlafaxine on the gene

expression of the neuroprotective enzyme superoxide dismutase (SOD I) in a catecholamine cell in vitro
model. Design: Molecular study of a cultured cell line. Interventions: Rat pheochromocytoma (PC 12)
cells were incubated in I and 10 pmol/L of various antidepressant medications for 24 or 48 hours.
Outcome measures: Northern blot analysis. Results: Amitriptyline up-regulated SODI messenger
RNA in a time- and dose-dependent manner. The greatest up-regulation was following incubation with 10

pmol/L amitriptyline for 48 hours. The addition of bupropion, doxepin or venlafaxine to PC 12 cell cultures
also up-regulated SOD I mRNA. Conclusions: These findings suggest that some antidepressants have the
ability to positively regulate neuroprotective genes.

Objectif: Etudier l'effet de l'amitriptyline, du bupropion, de la doxepine ou de la venlafaxine sur 1'expres-
sion genique de la superoxyde dismutase (SOD I), enzyme neuroprotectrice, dans une cellule de cat6chol-
amine dans un modele in vitro. Conception : ttude moleculaire d'une lign6e de cellules cultiv6es. Inter-
ventions: On a incube des cellules de ph6ochromocytome (PC 12) de rat dans I et 10 pmol/L de divers
antid6presseurs pendant 24 ou 48 heures. Mesures de resultats : Analyse par la methode Northern.
Resultats: R6gulation a la hausse de I'ARN messager de la SOD I provoquee par l'amitriptyline d'une
facon liee a la duree et a la dose. La regulation a la hausse la plus importante a suivi l'incubation avec

10 pmol/L d'amitriptyline pendant 48 heures. L'addition de bupropion, de doxepine ou de venlafaxine aux

cultures de cellule PC 12 a aussi hausse la regulation de l'ARNm de la SOD I. Conclusions : Ces cons-

tatations indiquent que certains antidepresseurs peuvent provoquer une regulation positive de genes
neuroprotecteurs.
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Introduction

Clinically efficacious antidepressants act on many dif-
ferent neurotransmitter systems and receptors.
Although some antidepressants act by blocking primar-
ily serotonergic, noradrenergic, or dopaminergic reup-
take, others block selected serotonergic receptors or
inhibit the enzyme monoamine oxidase (MAO).' Since
clinical improvement of depression is not seen for at
least 2 to 3 weeks following initiation of antidepressant
administration, the therapeutic efficacy of antidepres-
sants must be related to phenomena occurring down-
stream from neurotransmitter reuptake inhibition,
receptor blockade or enzyme inhibition.2 Such mecha-
nisms likely include long-term changes in gene regula-
tion in the affected neurons, and resulting changes in
the amount of protein expressed by these genes.34
Recent studies indicate that a number of antidepres-

sants have the ability to regulate the expression of sev-
eral genes linked to the survival, protection and repair
of neurons, including those of the hippocampus.4" Both
stress6 and dysregulation of the hypothalamic-
pituitary-adrenal axis (HPA)7-9 have long been impli-
cated in the etiology and exacerbation of clinical depres-
sion. In addition, stress'0"' and glucocorticoid injections
in animals'2"3 have both been found to cause dendritic
atrophy in the hippocampus. This led to the proposal
that hippocampal atrophy in clinical depression might
be due to such factors, and that this process of neuronal
atrophy continues throughout the course of depres-
sion.'4 Thus, neuroprotective approaches to treatment
have been proposed to prevent further clinical deterio-
ration in depression.
The copper/zinc-dependent enzyme superoxide dis-

mutase (SOD1, E.C.1.15.1.6) helps reduce the oxidative
stress of a cell and thus prevents premature aging and
death of neurons."'-7 In vivo studies have demonstrated
that up-regulation of this enzyme is neuroprotective in
ischemia'8 and glutamate neurotoxicity," whereas
reductions in SOD1 activity induce apoptotic cell death
of cultured neurons.20'2' Glucocorticoids have not only
been implicated in the etiology of depression, but have
also been shown to down-regulate SOD1 activity.'2 If at
least some cases of clinical depression are accompanied
by progressive hippocampal atrophy throughout the
course of the illness, antidepressants that up-regulate
SOD1 gene expression may prevent further deteriora-
tion of clinical symptoms related to hippocampal
degeneration. Therefore, we tested the ability of

amitriptyline, buproprion, doxepin and venlafaxine to
regulate SOD1 messenger RNA in rat pheochromocy-
toma (PC12) cells.

Methods

The PC12 cell line was obtained from American Type
Culture Collection (Rockville, Md.) and cultured in RPMI
1640 medium (Media Laboratory, College of Veterinary
Medicine, University of Saskatchewan, Saskatoon, Sask.)
containing 5% fetal calf serum and 10% horse serum plus
100 units/mL penicillin and 100 pg/mL streptomycin, as
described in protocols provided by the supplier. Two
doses of amitriptyline (1 and 10 pmol/L) were added to
the PC12 cultures. Cells were harvested after 24 and 48
hours of incubation. In a second experiment, PC12 cells
were incubated with 10 pmol/L of either amitriptyline,
buproprion, doxepin or venlafaxine for 48 hours. In both
experiments, control cultures receiving vehicle only
(saline solution) were also harvested at all time points, for
comparison.
SOD1 complementary DNA was kindly provided by

Dr. Joseph T. Coyle (Harvard Medical School, Boston,
Mass.). The cDNA probe was labelled by random primer
synthesis with [a-32P]dCTP as described previously.'24
Total cellular RNA was prepared from treated cells by
extraction in GITC buffer and collected by ultracentrifu-
gation through a 5.7 mol/L cesium chloride. The RNA
was chloroform-extracted, ethanol-precipitated, resus-
pended in diethylpyrocarbonate (DEPC)-treated water,
and stored at -70°C until use. RNA was measured
spectrophotometrically by absorbance at 260 nm, and 20
pmol/L of the extract was used for Northem blot analy-
sis. The total RNA was denatured at 65°C for 15 minutes
in 3-(N-morpholino) propane sofonic acid (MOPS)
buffer containing 50% formamide and 2.2 mol/L
formaldehyde, and separated by electrophoresis in a
1.0% agarose gel containing MOPS buffer and 2.2 mol/L
formaldehyde. Following electrophoresis, the RNA was
transferred to nylon membranes and the membranes
were cross-linked in a UV Stratalinker 2400 (Stratagene,
Aurora, Ont.).

Filters were prehybridized at 65°C for 2 hours with
prehybridization solution containing 10% dextransul-
fate, 5 x SSPE (sodium chloride, sodium biphosphate,
EDTA), 5 x Denhardt's solution, 0.5% sodium dodecyl
sulfate (SDS), and denatured salmon sperm DNA (200
pg/mL). Hybridization was performed at 65°C for 18
hours. After hybridization, membranes were washed at
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room temperature twice in 2 x SSPE-0.1% SDS, once in
0.1 x SSPE-0.1% SDS at 60°C and once in 0.1 x SSPE-0.1%
SDS at 60°C. The membranes were then exposed to X-
Omat AR film (Mandel Scentific, Guelph, Ont.) with
intensifying screens at -70°C to obtain autoradiograms.
The autoradiograms were scanned with a computerized
densitometer (Du 640, Beckman) for quantitative esti-
mates, and the signals were adjusted according to the
signals of rehybridization with a cyclophilin probe.

Statistical analysis

Results were analyzed by one- or two-way analysis of
variance performed using the CLR ANOVA program
(Clearlake Research, Houston, Tex.). In the presence of
significant F values, individual comparisons between
means were made using Newman-Keuls test.

Results

The PC12 cell cultures were treated with 1 or 10 pmol/L of
amitriptyline and incubated over 24 or 48 hours at 37°C; at
these times and doses, there were no apparent signs of cell
death or neurotoxicity. Treatment with amitriptyline pro-
duced significant increases in SOD1 gene expression in a
dose-dependent manner at 24 hours (F29 = 22.4, p < 0.0003)
and 48 hours (F29 = 45.2, p < 0.00001), as revealed by one-
way analysis of variance. The increases reached 25.5% (for
1 ,umol/L) and 35% (for 10 imol/L) above control levels
after 24 hours of incubation, and 36% (for 1 gmol/L) and
47% (for 10 pmol/L) above control levels after 48 hours
(Fig. 1). Two-way analysis of variance revealed an effect of
amitriptyline treatment (F118 = 63.3, p < 0.00001) and time
(F118 = 6.7, p < 0.0188), but no significant association
between dose and time (F1 18 = 1.6, p < 0.2362).
The addition of 10 pmol/L doses of bupropion, dox-

epin or venlafaxine to the PC12 cell cultures affected
SOD mRNA levels (F4,5 = 15.0, p < 0.00001), as revealed
by one-way analysis of variance. In the Northern blot
analysis, the cultured PC12 cells contained a single
species of mRNA for SOD1 (Fig. 2). The autoradio-
grams showed the increase in SOD1 mRNA after 48
hours' incubation with 10 pmol/L of amitriptyline,
bupropion, doxepin or venlafaxine (Fig. 2). Multiple
comparisons of drug-treated samples demonstrated
significantly increased SOD mRNA at 48 hours com-
pared with controls (p < 0.01). The increases rose 47%
above control levels for amitriptyline, 37% above con-
trols for bupropion, 39% above controls for doxepin

and 48% above controls for venlafaxine (Table 1). There
were no significant differences in the extent of the
increases produced in SOD1 mRNA expression
between antidepressants.

Discussion

PC12 cells have been widely used as a model for the
study of catecholamine synthesis, release and metabo-
lism, as well as neuronal differentiation and cell
death.226 SODi activity has been demonstrated in PC12
cultures, and its activity has been shown to be reduced
by treatment with antisense oligonucleotides; the
decrease in SOD1 activity occurs concomitantly with an
increase in apoptotic cell death.27 The present investiga-
tion shows for the first time that several antidepressants
increase SODi gene expression in PC12 cells. This effect
has been demonstrated for amitriptyline (a classic tri-
cyclic antidepressant), bupropion (a second-generation
antidepressant), doxepin (a norepinephrine reuptake
inhibitor) and venlafaxine (a new serotoninergic/nor-
adrenergic reuptake inhibitor). Thus, the results sup-
port the hypothesis that antidepressants could protect
neurons by up-regulating the expression of a gene cod-
ing for a neuroprotective enzyme (i.e., SOD1). Recent
experiments have shown that L-deprenyl and olanza-

Fig. I: Effect of amitriptyline on SOD I gene expression in
PC 12 cells. The cells were incubated with I or 10 ,umol/L
amitriptyline for 24 or 48 hours. Values are percent
means (with standard error bar) obtained from 4 obser-
vations. **p < 0.01 (Newman-Keuls test) compared with
the control group.
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pine both increase the gene expression of SOD1.2427
Though the mechanism of their effects is different, both
have antidepressant and neuroprotective actions.24',
The etiology of depression is only partially understood.

Although there have been many reports of hippocampal
cell loss in depression, it is difficult to ascertain if the atro-
phy occurred during neurodevelopment, at the time of
onset, or throughout the course of the illness. However,
the notion of ongoing neuronal atrophy in depression is
supported by the finding that decreases in hippocampal
volume are directly proportional to the duration of the ill-
ness.14 In addition, exacerbators of clinical depression such
as stress and glucocorticoids have been found to cause

hippocampal neuronal atrophy. For example, chronic
stress has been shown to cause atrophy of hippocampal
neurons in non-human primates,31 but glucocorticoids,
which are thought to be dysregulated in stress"0'3 and
depression,78 have also been found to cause hippocampal
dendritic atrophy when injected into animals.32

It is not known if this volumetric decrease reflects
permanent cell loss (via apoptosis or necrosis), or is due
to reversible atrophy of neuronal processes. Since anti-
depressants can reverse many symptoms of clinical
depression, and hippocampal atrophy caused by both
stress and glucocorticoids can be reversible,33 it is quite
possible that much of this atrophy is transient and
therefore state dependent. SODi is a ubiquitous
enzyme and is widely distributed in the central nervous
system, including regions purported to be atrophied in

depression, such as the hippocampus.34 It is possible
that up-regulation of this enzyme by antidepressants
may prevent further free-radical-induced neurotoxicity
in depression caused by dysregulation of the HPA or

stress. The up-regulation of SOD1 may occur by an

induction of cyclic adenosine monophosphate (cAMP)
and cAMP-response element binding protein.35'6
Thus, although a common mechanism of action of anti-

depressants has eluded researchers for years, and since
antidepressants act on many different transmitter sys-

tems and receptors, it is proposed that one of the shared
mechanisms of action of antidepressants is the up-regu-

lation of antioxidant enzymes such as SOD1. In at least
those cases of depression that are accompanied by stress
or glucocorticoid-induced neurotoxicity, this disorder
may need to be treated neuroprotectively throughout the
lifetime of the patient. Further studies will be performed
in vivo to determine regional differences in SOD1 regu-

SOD I mRNAI mean (san dard error)
Treatment (10I nolIL) n =4

Amitriptyline 147t (4.4)
Bupropion 137t ;(S.1)
Doxepin 139ff (7.0)
Venlafaxine 148t (5.6)

*Vaiues epressd as percenta of controls
t p < 0.01, onway snalsi of valance anlys and the NeAma-Kuls efor multipe
comparisons

Fig. 2: Effect of antidepressants on SOD I gene expression. Autoradiogram
obtained by Northern blot analysis. Total RNA was obtained from cultured
PC 12 cells. Lanes I and 2 are controls; lane 3 was treated for 48 hours with 10
,umol/L amitriptyline; lane 4 was treated for 48 hours with 10 gmol/L bupropi-
on; lane S was treated for 48 hours with 10 gmol/L doxepin; and lane 6 was

treated for 48 hours with 10 jmol/L venlafaxine.
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lation by antidepressants, including regions such as the
hippocampus purported to be atrophied in depression.
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